Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration
نویسندگان
چکیده
This study examines the mechanisms of spontaneous and induced [Ca2+]i spiking in nerve growth cones and the effect of spikes on growth cone migration. Over a 10-20 min observation period, 29% of DRG growth cones undergo spontaneous and transient elevations in physiological extracellular Ca2+ ((Ca2+)o; 2 mM), whereas 67% of growth cones exposed to 20 mM (Ca2+)o exhibit similar [Ca2+]i spikes. Spontaneous [Ca2+]i spiking was not observed in neuronal cell bodies or nonneuronal cells. Ca2+ influx through non-voltage-gated Ca2+ channels was required for spontaneous [Ca2+]i spikes in growth cones, since removal of (Ca2+)o, or addition of the general Ca2+ channel blockers La3+ or Ni2+, reversibly blocked [Ca2+]i spiking, while blockers of the voltage-gated Ca2+ channels did not. Experiments using agents that influence intracellular Ca2+ stores suggest that Ca2+ stores may buffer and release Ca2+ during growth cone [Ca2+]i spikes. Growth cone migration was immediately and transiently inhibited by [Ca2+]i spikes, but eventually returned to prespike rates.
منابع مشابه
Spontaneous calcium transients in developing cortical neurons regulate axon outgrowth.
Growth cones of cortical axons pause for many hours in preparation for axon branching. They become large and complex compared with small advancing growth cones. We wanted to investigate whether calcium transients regulate the advance of mammalian CNS growth cones. We found that spontaneous calcium transients in developing cortical neurons have characteristic patterns, frequencies, and amplitude...
متن کاملBDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221)
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal ...
متن کاملRegulation of patterned dynamics of local exocytosis in growth cones by netrin-1.
Axonal guidance and synaptic specification depends on specific signaling mechanisms that occur in growth cones. While several signaling pathways implicated in cone navigation have been identified, membrane dynamics in growth cones remains largely unknown. We took advantage of SynaptopHluorin and high-speed optical recordings to monitor the patterns of membrane dynamics in rat hippocampal growth...
متن کاملEthanol Modulates Spontaneous Calcium Waves in Axonal Growth Cones in Vitro
In developing neurons the frequency of long duration, spontaneous, transient calcium (Ca2+) elevations localized to the growth cone, is inversely related to the rate of axon elongation and increases several fold when axons pause. Here we report that these spontaneous Ca2+ transients with slow kinetics, called Ca2+ waves, are modulated by conditions of ethanol exposure that alter axonal growth d...
متن کاملFilopodial calcium transients promote substrate-dependent growth cone turning.
Filopodia that extend from neuronal growth cones sample the environment for extracellular guidance cues, but the signals they transmit to growth cones are unknown. Filopodia were observed generating localized transient elevations of intracellular calcium ([Ca2+]i) that propagate back to the growth cone and stimulate global Ca2+ elevations. The frequency of filopodial Ca2+ transients was substra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 14 شماره
صفحات -
تاریخ انتشار 1995